Forecasting the Market Clearing Price in Iran’s Electricity Market Using Two Deep Learning-Based Hybrid Models

Document Type : Research Paper

Authors

1 Master’s Student in Energy Economics, Faculty of Economics, Allameh Tabataba’i University, Tehran, Iran

2 Associate Professor, Department of Energy, Agricultural and Environmental Economics, Faculty of Economics, Allameh Tabataba’i University, Tehran, Iran

3 Department of Energy, Agricultural and Environmental Economics, Faculty of Economics, Allameh Tabataba’I University, Tehran, Iran

Abstract

Electricity is a unique commodity, and forecasting its price is challenging due to its distinct characteristics. Accurate electricity price forecasting is essential for market participants, as it can help reduce risk, increase economic profitability, and enhance power system stability. In the electricity price forecasting literature, machine learning models have been preferred over other models due to their ability to capture the nonlinear behavior of market data, ease of implementation, and good performance. In recent years, the emphasis on the importance of the number of hidden layers in machine learning structures has led to the emergence of deep learning. However, the performance of these models is significantly influenced by optimal feature selection and appropriate hyperparameter tuning. Therefore, this study aims to forecast the market clearing price in Iran’s electricity market by employing two deep learning-based hybrid models: deep neural networks (DNN) and long short-term memory (LSTM) networks, using feature selection and hyperparameter optimization techniques. The forecasting accuracy of the models is then compared. The results indicate that the LSTM-based hybrid model outperforms the DNN-based model.

Keywords

Main Subjects


منابع
ابونوری، اسمعیل و لاجوردی، حسن. (۱۳۹۲). تاثیر تشکیل بازار برق ایران بر کارایی نیروگاه های برق. کیفیت و بهره‌وری در صنعت برق ایران، ۲(۳)، 57-50.
بازار برق ایران. (بدون تاریخ). تجارت برق. وب‌سایت بازار برق ایران. بازیابی‌شده در ۲۷ فروردین ۱۴۰۴، از https://www.irema.ir
دفتر مطالعات اقتصادی و توسعه بازار برق. (۱۳۹۳). سازوکار فعالیت در بازار عمده‌فروشی برق ایران (گردآورندگان: ایمان رحمتی، جعفر خیاط‌زاده، اشرف خسروی، بیتا حسین‌زاده). شرکت مدیریت شبکه برق ایران.
شایقی، حسین و قاسمی، علی. (۱۳۹۴). پیش‌بینی قیمت روزانه برق با شبکه عصبی بهبودیافته مبتنی بر تبدیل موجک و روش آشوبناک جستجوی گرانشی. مجله مهندسی برق دانشگاه تبریز، ۴۵(۴)، ۱1۳-۱0۳.
معاونت بازار برق. (۱۴۰۱). پایش و تحلیل بازار برق ایران از سال ۱۳۹۸ تا ۱۴۰۰. بیتا حسین‌زاده، محمد حیدری‌زاده، اشرف خسروی، جعفر خیاط‌زاده، نرجس رهقان، ایمان رحمتی، مریم طاهری، سید میثم عزتی، حسن غریب‌پور، حسین محمدی و عبداللهی‌نیا (گردآورندگان). شرکت مدیریت شبکه برق ایران.
معتمدی سده، امید؛ استادی، بختیار و حسین زاده کاشان، علی. (۱۳۹۷). پیش بینی قیمت تسویه در بازار برق: الگوریتم ماشین بردار پشتیبان بهبودیافته. پژوهش‌های سیاستگذاری و برنامه‌ریزی انرژی، ۴(۱۱ )، 34-7.
ممی پور، سیاب؛ منصوری، فهیمه و ناظمی، علی. (۱۳۹۷). پیش بینی نوسانات قیمت برق در بازار برق ایران با استفاده از مدل مارکوف سویچینگ گارچ. مدلسازی اقتصادسنجی، ۳(۲)، ۹۳-۱۲۲.
منظور، داوود و یادی پور، مهدی. (۱۳۹۵). ارزیابی و پیش بینی نوسانات قیمت در بازار برق ایران به کمک مدل ARMAX-GARCH. اقتصاد مقداری، ۱۳(۱)، 117-97.
ناظمی، علی؛ ممی پور، سیاب و رحیمی، سلمان. (۱۳۹۷). پیش بینی قیمت برق با تاکید بر جهش های قیمت با استفاده از ترکیب شبکه عصبی-فازی با الگوریتم بهینه ازدحام ذرات. نشریه مهندسی صنایع، ۵۲(۲)، 290-277.
 
References
Abounoori, E., & Lajevardi, H. (2013). To Asses The Impact Of Establishment Of Iran’s Electric Power Market On Efficiency Of Power Plants. Iranian Electric Industry Journal Of Quality And Productivity, 2(3), 50–57. (In Persian).
Aggarwal, S. K., Saini, L. M., & Kumar, A. (2009). Electricity price forecasting in deregulated markets: A review and evaluation. International Journal of Electrical Power and Energy Systems, 31(1), 13–22.
Amjadi, N., & Hemmati, M. (2006). Energy price forecasting-problems and proposals for such predictions. IEEE Power and Energy Magazine4(2), 20-29.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794.
Costa, A. B. R., Ferreira, P. C. G., Gaglianone, W. P., Guillén, O. T. C., Issler, J. V., & Lin, Y. (2021). Machine learning and oil price point and density forecasting. Energy Economics, 102.
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13(3), 253–263.
Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017). Correlation and variable importance in random forests. Statistics and Computing, 27(3), 659–678.
Guyon, I., Weston, J., & Barnhill, S. (2002). Gene Selection for Cancer Classification using Support Vector Machines (Vol. 46).
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (Third Edition). Elsevier.
Heidarpanah, M., Hooshyaripor, F., & Fazeli, M. (2023). Daily electricity price forecasting using artificial intelligence models in the Iranian electricity market. Energy, 263.
Huang, S., Shi, J., Wang, B., An, N., Li, L., Hou, X., ... & Zhong, M. (2024). A hybrid framework for day-ahead electricity spot-price forecasting: A case study in China. Applied Energy373, 123863.
Iran Electricity Market. (n.d.). Electricity trading. Iran Power Market website. Retrieved April 15, 2025, from https://www.irema.ir
Jedrzejewski, A., Lago, J., Marcjasz, G., & Weron, R. (2022). Electricity Price Forecasting: The Dawn of Machine Learning. IEEE Power and Energy Magazine, 20(3), 24–31.
Kapoor, G., & Wichitaksorn, N. (2023). Electricity price forecasting in New Zealand: A comparative analysis of statistical and machine learning models with feature selection. Applied Energy347, 121446.
Keles, D., Scelle, J., Paraschiv, F., & Fichtner, W. (2016). Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Applied Energy, 162, 218–230.
Kirschen, D. S., & Strbac, G. (2018). Fundamentals of power system economics. John Wiley & Sons.
Lago, J., de Ridder, F., & de Schutter, B. (2018a). Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Applied Energy, 221, 386–405.
Lago, J., de Ridder, F., Vrancx, P., & de Schutter, B. (2018b). Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. Applied Energy, 211, 890–903.
Lago, J., Marcjasz, G., de Schutter, B., & Weron, R. (2021). Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. In Applied Energy (Vol. 293). Elsevier Ltd.
Li, W., & Becker, D. M. (2021). Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling. Energy, 237.
Madadkhani, S., & Ikonnikova, S. (2024). Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices. Energy Economics, 129.
Mamipour, S., Mansouri, F., & Nazemi, A. (2018). Multi-objective Modeling of Industrial Clusters from the Perspective of Dynamic Cellular Manufacturing Systems and Sustainable Economic Development. The Journal of Econometric Modelling, 3(2), 93–122. (In Persian).
Manzor, D., & Yadipour, M. (2016). Studying the Iranian Electricity Market Price with an ARMAX-GARCH Model. Quarterly Journal of Quantitative Economics, 13(1), 97–117. (In Persian).
Morales, J. M., Conejo, A. J., Madsen, H., Pinson, P., & Zugno, M. (2014). Integrating Renewables in Electricity Markets (Vol. 205). Springer US.
Motamedi, O., Ostadi, B., & Husseinzadeh Kashan, A. (2018). Prediction Model for Iran’s Electricity Market Clearing Pricees: Improved SVM Algorithm. Quarterly Journal of Energy Policy and Planning Research, 4(11), 7–34. (In Persian).
Nazemi, A., Mamipour, S., & Rahimi, S. (2018). Forecasting Price of Electricity Emphasizing Prices Jumps Using Combination of Neural and Fuzzy Network with Particle Swarm Optimization. Advances in Industrial Engineering, 52(2), 277–290. (In Persian).
Nielsen, S., Sorknæs, P., & Østergaard, P. A. (2011). Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources - A comparison of marginal pricing and pay-as-bid. Energy, 36(7), 4434–4444.
Office for Economic Studies and Electricity Market Development. (2014). Mechanism of operation in Iran’s wholesale electricity market (Compiled by I. Rahmati, J. Khayyatzadeh, A. Khosravi, & B. Hoseinzadeh). Iran Grid Management Company.
Panapakidis, I. P., & Dagoumas, A. S. (2016). Day-ahead electricity price forecasting via the application of artificial neural network based models. Applied Energy, 172, 132–151.
Power Market Department. (2022). Monitoring and analysis of Iran’s electricity market from 2019 to 2021 (Compiled by B. Hoseinzadeh, M. Heydarizadeh, A. Khosravi, J. Khayyatzadeh, N. Rahghan, I. Rahmati, M. Taheri, S. M. Ezzati, H. Gharibpour, H. Mohammadi, & A. Abdollahinia). Iran Grid Management Company.
Saleh, A. M., István, V., Khan, M. A., Waseem, M., & Ali Ahmed, A. N. (2024). Power system stability in the Era of energy Transition: Importance, Opportunities, Challenges, and future directions. Energy Conversion and Management: X, 24, 100820.
Shahidehpour, M., Yamin, H., & Li, Z. (2002). Market operations in electric power systems: forecasting, scheduling, and risk management. John Wiley & Sons.
Shayeghi, H., & Ghasemi, A. (2015). Day-Ahead Electricity Price Forecasting Using WT, ANN and Chaotic Gravitational Search Model. Tabriz Journal of Electrical Eng, 45(4), 103–113. (In Persian).
Shuai, M., Chengzhi, W., Shiwen, Y., Hao, G., Jufang, Y., & Hui, H. (2018). Review on Economic Loss Assessment of Power Outages. Procedia Computer Science, 130, 1158–1163.
Ugurlu, U., Oksuz, I., & Tas, O. (2018). Electricity price forecasting using recurrent neural networks. Energies11(5), 1255.
United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development.
Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. In International Journal of Forecasting (Vol. 30, Issue 4, pp. 1030–1081). Elsevier B.V.
Yaprakdal, F., & Varol Arısoy, M. (2023). A Multivariate Time Series Analysis of Electrical Load Forecasting Based on a Hybrid Feature Selection Approach and Explainable Deep Learning. Applied Sciences (Switzerland), 13(23).
Zahid, M., Ahmed, F., Javaid, N., Abbasi, R. A., Zainab Kazmi, H. S., Javaid, A., ... & Ilahi, M. (2019). Electricity price and load forecasting using enhanced convolutional neural network and enhanced support vector regression in smart grids. Electronics8(2), 122.
Zhang, X., Wang, J., & Gao, Y. (2019). A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and SVM. Energy Economics, 81, 899–913.