Evaluating Bitcoin Price Index Fluctuations on Economic Development Using Univariate GARCH Models

Document Type : Research Paper

Authors

1 M.Sc. Student, Sistan and Baluchestan University, Zahedan, Iran

2 Associate Professor, Department of Economics, Sistan and Baluchestan University, Zahedan, Iran.

3 Postdoctoral Researcher, Faculty of Economics, Tehran University, Tehran, Iran

Abstract

 Digital currency analysis, especially Bitcoin, as the most popular digital currency, has received a lot of attention in recent years. The reason for this can be related to its innovative features, simplicity, transparency and increasing popularity. Since its introduction, Bitcoin has created great challenges and opportunities for policymakers, economists, entrepreneurs and consumers. The main purpose of writing this article is to investigate and analyze the
fluctuations and returns of Bitcoin using univariate conditional variance heterogeneous autoregression models in the period between March 2012 and March 2019. In this framework, GARCH, GJR-GARCH, TGARCH EGARCH and GARCH-M univariate GARCH models are used. The results show that the best model for risk assessment in univariate GARCH models is GARCH-M model, because the liquidity risk predicts the Bitcoin price index with less error than other univariate models. Also, the results obtained in the EGARCH model show that there are no leverage effects in Bitcoin rate changes and the estimated model is a symmetric model. Examining several other univariate GARCH models also showed that the price of Bitcoin has symmetry in positive and negative news, this means that positive and negative shocks have the same effect on the price of bitcoin.
 

Keywords


  • تک روستا، علی، و حبیب، مروت و تک روستا، حسین (1390). مدل سازی نوسانات بازدهی روزانه سهام در بورس اوراق بهادار تهران. دو فصلنامه اقتصاد پولی و مالی، دوره هجدهم، شماره 2؛ 84-61.
  • جهانی، علی. (1397). بررسی تأثیر اخبار بر روند شکل­گیری قیمت بیت کوین. پایان نامه کارشناسی ارشد، گروه مدیریت کسب و کار، دانشکده مدیریت و اقتصاد، تهران: دانشگاه صنعتی شریف.
  • محمدی، شاپور و راعی، رضا و فیض آباد، آرش. (1387). محاسبه ارزش در معرض ریسک پارامتریک با استفاده از مدل­های ناهمسانی واریانس شرطی در بورس اوراق بهادار تهران. نشریه تحقیقات مالی، 10(25): 124-109.
  • ناطق الاسلام، سید مصطفی و فرزان جم، احمدرضا. (1396). همه چیز درباره بیتکوین. انتشارات ماهنامه شبکه.                                        
  • Berument, H., & Dincer, N. N. (2005). Inflation and inflation uncertainty in the G-7 countries. Physica A: Statistical Mechanics and its Applications348, 371-379.
  • Bouoiyour, J., & Selmi, R. (2015). Bitcoin price: Is it really that new round of volatility can be on way? Munich Pers. RePEc Arch. 6558 (August).
  • Bouoiyour, J., & Selmi, R. (2016). Bitcoin: A beginning of a new phase. Economics Bulletin36(3), 1430-1440.
  • Breusch, T. S. (1978). Testing for autocorrelation in dynamic linear models. Australian economic papers17(31), 334-355.
  • Cermak, V. (2017). Can bitcoin become a viable alternative to fiat currencies? An empirical analysis of bitcoin's volatility based on a GARCH model. An Empirical Analysis of Bitcoin's Volatility Based on a GARCH Model (May 2, 2017).
  • Cheng H, J., Liu, H. C., & Yang, J. J. (2020). Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators. The North American Journal of Economics and Finance52, 101165.
  • Dyhrberg, A. H. (2015). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters16, 85-92.
  • Gelosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance48(5), 1779-1801.
  • Godfrey, L. G. (1978). Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica: Journal of the Econometric Society, 1293-1301.
  • Hefner, F., Rombast, B., (2004). Emprical analysis of GARCH models in value at risk estimation. International Financial Markets, Institutions and money, 16, 180-19.
  • Jahani, A. (2018). Investigating the impact of news on the formation of Bitcoin prices. Master Thesis, Business Management Group, Faculty of Management and Economics, Sharif University of Technology, Tehran (In Persian).
  • Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters158, 3-6.
  • ,
  • Mohammadi, Sh., Raei, R., & Faizabad, A. (2008). Calculation of value at parametric risk using conditional variance heterogeneity models in Tehran Stock Exchange, Journal of Financial Research: 10 (25), 109-124 (In Persian).
  • Nategh al-salam, S. M., & Farzan Jam, A., (2017). Everything about Bitcoin. Mahnameh Shabakeh Publications, Tehran. (In Persian).
  • Nelson, D. B. (1991). Conditional heteroscedasticity in asset returns: a new approach. Econometrica, 59, 347-370.
  • Papadamou, S., Fassas, A., & Koulis, A. (2019). Price discovery in bitcoin futures. Research in International Business and Finance52, 101116.
  • Papangelou, S., & Papadaki, S. (2020). Digital Currencies: A Multivariate GARCH Approach. In Mathematical Research for Blockchain Economy(pp. 61-75). Springer, Cham.
  • Tak Roosta, A., Morovat, H., & Tak Roosta, H. (2011). Modeling the fluctuations of daily stock returns on the Tehran Stock Exchange. Bi-Quarterly Journal of Monetary and Financial Economics, 18(2), 61-84 (In Persian).
  • Tong, M., Wu, Sh., Yang, Zh., & Derbali, A. (2020). Does gold or Bitcoin hedge economic policy uncertainty?. Finance Research Letters, 31, 171-178.
  • Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and control, 18(5), 931-955.