منابع
- کاظمی، ابوالفضل؛ قاسمی، جواد و زندیه، وحید. (1390). رتبهبندی اعتباری مشتریان حقیقی بانکها با استفاده از مدلهای مختلف شبکههای عصبی: مطالعه موردی یکی از بانکهای خصوصی ایران. مطالعات مدیریت صنعتی. سال نهم، شماره 33، زمستان 90: 161-131.
- کیا، مصطفی. (1389). شبکههای عصبی در MATLAB. انتشارات کیان رایان سبز، چاپ سوم.
- صورت مالی بانکهای کشور (93-1385)، مؤسسه عالی بانکداری ایران.
- دادمحمدی، دانیال و احمدی، عباس. (1393). رتبهبندی اعتباری مشتریان بانک با استفاده از شبکه عصبی با اتصالات جانبی. فصلنامه توسعه مدیریت پولی و بانکی، سال دوم، شماره 3، تابستان.
- محرابیان، سعید؛ ساعتی مهتدی، صابر و هادی، علی. (1390). ارزیابی کارآیی شعب بانک اقتصاد نوین با ترکیبی از روش شبکه عصبی و تحلیل پوششی دادهها. مجله تحقیق در عملیات و کاربردهای آن، سال هشتم، شماره4 (پیاپی 31)، زمستان 90: 39-29.
- نماگرهای اقتصادی، 93-1385، بانک مرکزی ایران.
- Andrianova, S., Baltagi, B., Lensik, R., Rewilak, J., & Rousseau, P. (2015). A New International Database on Financial Fragility. University of Leicester, Department of Economics, Working paper, No. 15/18.
- Caprio, G., & Klingebiel, D.C. (2002). Episodes of systemic and borderline banking crises. In: D. Klingebiel and L. Laeven, eds., Managing the Real and Fiscal Effects of Banking Crises. Washington, D. C. The World Bank, Discussion Paper, No. 428: 31-49.
- Degryse, H., & Elahi, M. A. (2012). Determinants of banking system fragility: A regional perspective. Katholieke universiteit Leuven. Faculty of Business Economics. Working paper: AFI_1263.
- Demirguc-Kunt, A., & Detragiache, E. (1998). The Determinants of Banking Crises: Evidence from Developed and Developing Countries. Working Paper, The World Bank.
- Ecer, F. (2013). Comparing the bank failure prediction performance of neural networks and support vector machines: the Turkish case. Economic research, 26(3), 81-98.
- Erdal, H. I., & Ekinci, A. (2013). A comparison of various artificial intelligence methods in the prediction of bank failures. Computational Economics, 42(2), 199-215.
- Fielding, D., & Rewilak, J. (2015). Credit booms, financial fragility and banking crises. Economics Letters, 136, 233-236.
- Geluk, J., de Haan, L., & de Vries, C. (2007). Weak & Strong Financial fragility. Tinbergen Institute Discussion Paper, The Erasmus Universiteit Rotterdam, No: 023/2
- Ghosh, S. (2011). A simple index of banking fragility: application to Indian data. The Journal of Risk Finance, 12(2), 112-120.
- Hashemi, R. R., Le Blanc, L. A., Rucks, C. T., & Rajaratnam, A. (1998). A hybrid intelligent system for predicting bank holding structures. European Journal of Operational Research, 109(2), 390-402.
- Hawkins, J., & M. Klau. (2000). Measuring potential vulnerabilities in emerging market economies. Basel: Bank for International Settlements, Working papers, No. 91.
- Khemakhem, S., & Boujelbene, Y. (2015). Credit risk prediction: A comparative study between discriminant analysis and the neural network approach. Accounting and Management Information Systems, 14(1), 60-78.
- Kibritcioglu, A. (2002). Excessive risk-taking, banking sector fragility, and banking crises. U of Illinois, Commerce and Bus. Admin. Working Paper, (02-0114).
- Lindgren, C. J., Garcia, G. G., & Saal, M. I. (1996). Bank soundness and macroeconomic policy. International Monetary Fund.
- Messai, A. S., & Gallali, M. I. (2015). Financial Leading Indicators of Banking Distress: A Micro Prudential Approach-Evidence from Europe. Asian Social Science, 11(21), 78.
- Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In 1990 IJCNN International Joint Conference on neural networks (pp. 163-168).
- Penas, M. F., & Tümer-Alkan, G. (2010). Bank disclosure and market assessment of financial fragility: evidence from Turkish banks’ equity prices. Journal of financial services research, 37(2-3), 159-178.
- Pesola, J. O. (2007). Financial fragility, macroeconomic shocks and bank’s loan losses: evidence from Europe. Social Science Research Network electronic library. http://ssrn.com/abstract_id=1018637.
- Tadesse, S. (2005). Banking fragility and disclosure: international evidence. University of South Carolina.
- Wanke, P., Azad, M. A. K., & Barros, C. P. (2016). Predicting efficiency in Malaysian Islamic banks: A two-stage TOPSIS and neural networks approach. Research in International Business and Finance, 36, 485-498.
- Zaghdoudi, T. (2013). Bank failure prediction with logistic regression. International Journal of Economics and Financial Issues, 3(2), 537-543.
- Zhang, W., Cao, Q., & Schniederjans, M. J. (2004). Neural network earnings per share forecasting models: a comparative analysis of alternative methods. Decision Sciences, 35(2), 205-237.
- Zwet, A. V., & Swank, J. (2000). Financial Fragility and Macroeconomic Performance. De Nederlandsche Bank: DNB Staff Reports, 2000, No. 52.